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Internet-enabled smartphones and ultra-wide displays are transforming a variety of visual apps spanning from
on-demand movies and 360° videos to video-conferencing and live streaming. However, robustly delivering
visual content under fluctuating networking conditions on devices of diverse capabilities remains an open
problem. In recent years, advances in the field of deep learning on tasks such as super-resolution and image
enhancement have led to unprecedented performance in generating high-quality images from low-quality
ones, a process we refer to as neural enhancement. In this paper, we survey state-of-the-art content delivery
systems that employ neural enhancement as a key component in achieving both fast response time and
high visual quality. We first present the components and architecture of existing content delivery systems,
highlighting their challenges and motivating the use of neural enhancement models as a countermeasure. We
then cover the deployment challenges of these models and analyze existing systems and their design decisions
in efficiently overcoming these technical challenges. Additionally, we underline the key trends and common
approaches across systems that target diverse use-cases. Finally, we present promising future directions based
on the latest insights from deep learning research to further boost the quality of experience of content delivery
systems.
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1 INTRODUCTION
Internet content delivery has seen a tremendous growth over the past few years. Specifically,
video traffic is estimated to account for 82% of global Internet traffic by 2022 – up from 75% in
2017 [23, 124]. This growth is attributed to not only the rapid increase of Internet-enabled devices,
but also the support for higher-resolution content. For instance, an estimated 66% of TV sets
will support Ultra-High-Definition (4K) videos by 2023 as compared to 33% in 2018 [22]. Most
importantly, content traffic such as live streaming, video-conferencing, video surveillance, and both
short- and long-form video-on-demand, are expected to rise very quickly. To meet these demands,
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a new class of distributed systems has emerged. Such systems span from content delivery systems
(CDS) [114, 166] that aim to maximize the user satisfaction and quality of experience (QoE), to video
analytics frameworks that provide support for augmented and virtual reality apps by co-optimizing
latency and accuracy [36, 152].
One of the primary challenges of distributed systems for content delivery is their reliance on

networking conditions. Currently, the quality of the communication channel between client and
server plays a key role in meeting the application-level performance needs due to the significant
amount of transferred data and the tight latency targets. Nevertheless, in real-life mobile networks,
the communication speed fluctuates and poor network conditions lead to excessive response times,
dropped frames or video stalling, that rapidly degrade the user experience. This phenomenon is
further amplified by the increasing number of users which compete for the same pool of network
resources.
For many years, bitrate adaptation has been the dominant approach for counteracting the

networking dynamicity and the main driver behind adaptive video streaming [11], with already
deployed solutions by industry content providers such as iQiyi [140], Netflix [62] and YouTube [103].
Under this scheme, each video is broken down into segments that are encoded using multiple
bitrates. Upon client’s request, the segments are streamed over HTTP, with the client selecting
the bitrate in a per-segment manner. Adaptive bitrate (ABR) algorithms typically consider either
the connection speed [71, 100, 172] or the playback buffer state [63, 137], to dynamically select
the bitrate of each video segment. Although ABR technology has achieved significant gains in
sustaining high QoE across diverse settings, existing approaches still leave substantial portion of
the available bandwidth underutilized [61, 103] either due to the ABR algorithm’s suboptimality or
due to the service provider’s policy of minimizing bandwidth usage. With ABR leaving substantial
room for further optimization, there is an emerging need for novel techniques to further boost
the performance of content delivery systems and ensure high QoE across various visual content
delivery applications, network conditions and device capabilities.
One of these techniques includes the use of newly emerging technologies such as telepres-

ence [170]. For instance, the recently released Nvidia Maxine [120] can be used to drastically reduce
the network load by allowing each user to only transmit at least one key frame, which is used to
initialize the model at the receiver’s end. During video-conferencing, facial landmarks, which use
considerably less bandwidth than frames, are exchanged and used by their respective models to
synthesize the video and mimic the other user’s facial expressions, hence resulting in a fast and
accurate video-conferencing experience even under extremely low-bandwidth settings. However,
the usage of such techniques is limited and solely for video-conferencing as working in dynamic
environments or with multiple users is still an unsolved challenge.

Another recent key method that enables tackling this challenge in general is neural enhancement
through super-resolution (SR) and image enhancement models. These models are capable of
processing a low-resolution or low-quality image and generating a high-quality output. With the
unprecedented performance of convolutional neural networks (CNNs), content delivery systems
have begun integrating neural enhancement models as a core component. The primary paradigm
of using neural enhancement models in content delivery systems comprises the transmission of
compact low-resolution or low-quality content, often along with the associated neural model,
followed by its subsequent quality enhancement on the receiver side through a enhance-capable
model [165]. In this manner, the transfer load is minimized, drastically reducing the network
footprint and the corresponding bandwidth requirements, with the visual quality recovered on the
client side.

Despite their benefits, integrating state-of-the-art neural enhancement models into visual content
delivery systems poses significant challenges. First, these models, especially SR models, have
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Table 1. Overview of Visual Content Delivery Systems

System Task Year

MobiSR [92] On-demand image delivery October 2019
Yeo et al. [165] On-demand video delivery November 2017
NAS [166] On-demand video delivery October 2018
NEMO [164] On-demand video delivery September 2020
PARSEC [28] 360° video delivery August 2020
Supremo [167] On-demand image delivery September 2020
CloudSeg [152] Video segmentation July 2019
Dejavu [54] Video-conferencing February 2019
LiveNAS [79] Live streaming July 2020
SplitSR [108] Digital zoom March 2021

excessive computational demands that are measured up to hundreds of TFLOPs per frame in order
to achieve an upscaling of up to 4K or 8K. With client platforms typically involving devices with
strict resource and battery constraints [6, 85, 146], clients are still struggling to execute neural
enhancement models on-device while meeting the target quality [92]. This fact is aggravated by
the stringent latency and throughput requirements that are imposed in order to sustain high QoE.
Finally, enabling the deployment of such systems requires overcoming unique technical challenges
stemming from the diversity of use-cases, spanning from on-demand video streaming [166] to
video-conferencing [54].

In this paper, we provide a timely and up-to-date overview of the growing area of visual content
delivery systems that employ neural enhancement. Through this survey, we aim to equip researchers
new to the field with a comprehensive grounding of next-generation content delivery system design,
revealing how neural enhancement techniques can lead to greater performance than status quo
methods. More specifically, we make the following novel contributions:

• We motivate neural enhancement for CDS by describing the architecture, major components,
performance metrics and open challenges of conventional content delivery systems.

• We survey the state-of-the-art existing systems that utilize neural enhancement (Table 1)
across diverse content delivery applications including on-demand video and image services,
visual analytics, video-conferencing, live streaming and 360° videos. We detail their neural
model design and system optimization strategies, assessing their strengths and limitations.

• Drawing from the latest progress by the computer vision community, we propose several
promising future directions for future research and describe how they can be integrated to
value-add existing and inspire future content delivery systems.

2 VISUAL CONTENT DELIVERY SYSTEMS
Content delivery systems are systems that aim to deliver image or video content to the users with
minimal latency and high visual quality, while supporting a diverse set of client platforms. Across
the years, several different aspects of CDS have been studied, from optimized networking [81,
101] and system design [10, 26, 33, 43, 114] to user behavior [98, 169], cost minimization [56,
94] and performance evaluation [2, 47, 97, 99]. Common underlying challenges for sustaining
high performance and meeting the agreed-upon quality of service (QoS) are the client device
heterogeneity – from powerful desktops to diverse mobile devices [157] – and the reliance on
networking conditions. In this section, we present 1) the common performance metrics, 2) the typical
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architecture of CDS and 3) the adaptive bitrate methods that are conventionally used to counteract
bandwidth fluctuations. Then, we introduce 4) the recent technique of neural enhancement in terms
of its principle of operation and the associated technical challenges.

2.1 Performance Evaluation Metrics
The performance evaluation of CDS is complex, comprising multiple metrics with often competing
dynamics. The primary metrics of interest include essential attributes such as visual quality, frame
rate, response time, rebuffering time, accuracy and quality of experience. Based on the characteristics
of the target task, the design of CDS often prioritizes a subset of metrics and aims to reach a task-
specific balance among them. Therefore, measuring and reporting all these criteria across diverse
scenarios plays an important role in determining the strategic trade-offs made by CDS.

Visual Quality. Traditionally, the bitrate dictates the maximum resolution of the content without
rebuffering; the higher the bitrate, the higher the supported resolution and thus the better the visual
quality. With the introduction of neural enhancement models in CDS, the maximum resolution is
determined by both the bitrate and the amount of computational resources available to execute
these models. Additionally, the visual quality of the content is influenced not only by its maximum
resolution, but also by the performance of the model used to enhance the content, i.e. the model’s
enhancement capability. The dependency on the bitrate for visual quality is therefore relaxed and
the extent of this dependency is determined by the available compute, upscale factor and degree of
compression. In other words, given sufficient computational resources, the impact on the content’s
visual quality is shifted towards the performance of the neural model. For instance, higher upscale
factors and more computational resources enable the streaming of high-definition resolution at
lower bitrates and thus rely on the performance of the model for high visual quality.
The visual performance of a neural enhancement model is often measured using either i) a

distortion-based metric, such as Peak Signal-to-Noise Ratio (PSNR) [44] or Structural Similarity
Index Measure (SSIM) [155], or ii) a perceptual-based metric, such as Naturalness Image Quality
Evaluator (NIQE) [117] or Learned Perceptual Image Patch Similarity (LPIPS) [174]. Although
optimizing using a perceptual-based metric will lead to more natural-looking images, existing CDS
adopt distortion-based metrics, which aim to maximize image fidelity. These metrics are resolution-
agnostic and the visual quality is determined solely by the absolute pixel-to-pixel error or their
inter-dependencies between the original frame and its reconstructed version at the receiver. In order
to accommodate these model performance metrics into traditional QoE metrics that utilized solely
the bitrates, some existing neural enhancement-based CDS directly map these model performance
metrics into bitrates as detailed below.

Accuracy. In video analytics use-cases [36, 152], such as security surveillance, traffic monitoring
and face recognition, the most commonly used performance metric is accuracy, which captures the
proportion of correct classifications over the input samples processed upon deployment. Accuracy
is reported as percentage for classification tasks or in the range 0-1 for the Intersection-over-Union
(IoU) metric of semantic segmentation tasks [110].

Response Time. Latency, or response time, is the primary performance indicator in latency-sensitive
interactive applications, such as virtual reality [18, 30, 107], video analytics services [152] and
video-conferencing [54]. Measured in seconds, response time is the end-to-end time between when
an input event occurs (e.g. new frame in the user’s real-time video or caller makes a gesture) and
when the output is returned to the user’s device (e.g. analytics result or enhanced view of caller). In
such scenarios, excessive buffering adds a prohibitive latency overhead that degrades the QoE and
is often not an option.
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Frame Rate. Frame rate is among the primary metrics of interest in throughput-driven appli-
cations, such as video-on-demand [7, 90, 164, 166] and live video streaming [79]. Frame rate is
measured in frames per second (fps), with the lower bound of real-time frame rate being between
24-30 fps.

Rebuffering. A critical metric for characterizing the user-perceived quality of video applications
is rebuffering [118]. This phenomenon occurs when the playback buffer is drained due to the
slow transmission of video segments, with the video player stalling and the playback pausing.
Rebuffering captures the temporal properties of a video playback, independently of its content, and
is typically analyzed with respect to: 1) initial buffering time, the time between the request of a
video by the user and the beginning of its playback; 2) mean rebuffering duration, the average time
of a rebuffering event; and 3) rebuffering frequency, the occurrence frequency of rebuffering events.

Quality of Service (QoS). Network-level QoS captures the performance of a network connection
and its capabilities to provide packet transfer with the agreed-upon requirements [39]. QoS is
typically quantified using a set of networking-level metrics, including delay, jitter, packet loss rate
and bandwidth. By monitoring these quantities, service providers can tune network parameters
and apply traffic shaping to meet specific service-level agreements (SLAs) and sustain a high QoS.
In this endeavor, the expected outcome is that high network-level QoS corresponds to high user
satisfaction for the underlying application.

Quality of Experience (QoE). Despite the merits of network-level QoS, the relation between QoS
measurements and user satisfaction is not trivial. With a more user-centric perspective, quality of
experience (QoE) aims to capture the quality of an application or service from the point of view of
the users. QoE is typically assessed either via subjective or objective methods. To directly measure
the subjective perceived quality, a group of actual users are asked to provide a quality score over a
sequence of videos in order to obtain a mean opinion score (MOS) [68]. Despite the accuracy of
this approach, it relies on significant manpower and has to be conducted offline [5], preventing the
automated monitoring of QoE that is required by real-time video applications.

With the subjective approach not deployable, objective methods have emerged. Such approaches
consist of continuously collecting network-level QoS measurements together with application
performance metrics [118], such as video bitrate, mean rebuffering time, rebuffering frequency
and per-frame spatial quality [122], and using analytical formulas to aggregate them in order to
automatically estimate QoE. Such an approach is adopted by the majority of the covered content
delivery systems to track in real-time the achieved QoE and adapt accordingly.

Themost commonly used objective QoEmetric (Eq.( 1)) [32, 61, 168] to date for neural enhancement-
based CDS takes into account the bitrate of each video sequence, 𝑅, and rebuffering measures.
In this respect, QoE is generally defined as a linear combination of: the bitrate utility, 𝑞(𝑅), that
maps bitrate 𝑅 to video quality; the rebuffering time caused by downloading the n-th segment, 𝑇𝑛 ;
the initial buffering time, 𝑇𝑠 ; and the smoothness of the selected quality, 𝑞(𝑅𝑛+1) − 𝑞(𝑅𝑛), which
captures the variation in visual quality between subsequent segments (𝑛 and 𝑛 + 1) in terms of both
their number and amplitude.

𝑄𝑜𝐸 =
𝛼
∑𝑁

𝑛=1 𝑞(𝑅𝑛) − 𝛽
∑𝑁

𝑛=1𝑇𝑛 − 𝛾
∑𝑁−1

𝑛=1 |𝑞(𝑅𝑛+1) − 𝑞(𝑅𝑛) |
𝑁

− 𝛿𝑇𝑠 (1)

where 𝑁 is the total number of video sequences, and the bitrate utility is modeled as linear [168],
𝑞(𝑅) = 𝑅, logarithmic [137], 𝑞(𝑅) = 𝑙𝑜𝑔(𝑅/𝑅min), to diminish improvement at higher bitrates,
or fixed [114] to favor higher-definition bitrates. Hyperparameters 𝛼 , 𝛽 , 𝛾 and 𝛿 determine the
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Fig. 1. Architecture of content delivery systems.

importance of the four components, penalizing the average segment quality, rebuffering delay,
smoothness of quality variation, and initial buffering time, respectively.
In order to take into account the neurally enhanced quality of the videos, a few works [164,

166] used an inverse mapping from quality to bitrate through interpolation (e.g. piecewise linear
interpolation). Specifically, 𝑅𝑛 = 𝑉𝑛 𝑓

−1 (𝑓 (𝑚(𝑉𝑛))) where 𝑉 is the video sequence,𝑚 is the neural
enhancement model and 𝑓 is the model’s performance metric. The QoE is, therefore, determined
using the estimated bitrate, 𝑅𝑛 , given the performance of the model instead of the actual bitrate.

Other considerations. In addition to traditional performance measures, other metrics of interest
for CDS are the server-provider-side (SP-side) and user-side costs. On the SP side, costs can be
quantified based on bandwidth usage, per user or aggregate, or processing time on the SP’s servers.
Analytically, these can be captured either as additional hard constraints with specific bandwidth
budget and computation time limit, or as additional objectives to be optimized, where the bandwidth
and server resource usage are minimized. On the user side, cost can be quantified based on the
additional energy overhead or the computational and memory resource usage imposed by running
neural enhancement on the client device. Similarly to SP-side costs, these can be modeled either as
hard constraints or as metrics in an optimization problem which maximizes energy efficiency and
minimizes processing time.

2.2 Architecture
CDS typically adopt distributed architectures consisting of one or multiple clients and servers.
Figure 1 depicts the typical architecture of such a system. Focusing on video-on-demand (VOD)
without loss of generality, the operation starts on the client side with the user selecting an online
video to watch and the video player app (Video Player) sending a request to the video server. Next,
the server fetches the video from its database (Video DB) and launches a transmission-preparation
stage. In modern adaptive video streaming services [11, 138], instead of sending one large monolithic
video file, the video content is divided into a series of seconds-long segments (e.g. 4 seconds per
segment). This approach enables the client’s Adaptive Streaming Controller to request different
bitrate encoding per segment through the ABR Controller in order to dynamically adapt to changing
environmental conditions [29]. To this end, each video segment is compressed by the server-side
Video Codec using a predefined encoding scheme and the client-specified bitrate. Finally, the client’s
Segment Downloader pulls the encoded segments, where they are decoded by the client-side Video
Codec and passed to the Playback Buffer to be concatenated and eventually played. As discussed in
Section 4, depending on the target application and adopted design decisions, CDS may optionally
integrate additional components such as a Frame Selector, Model Selector and/or QoE Evaluator on
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the client side, and a Quality Feedback Mechanism and/or a Vision Analytics backend on the server
side. All processing stages are typically pipelined to enable streaming operations and a higher
attainable throughput.
For such systems to meet the performance targets, the communication channel between client

and server has to sustain high bandwidth throughout the streaming process. This constitutes a
strong assumption that breaks for mobile clients where the connectivity conditions vary continu-
ously. Hence, additional techniques, such as adaptive bitrate and neural enhancement, have been
introduced that enable the dynamic adaptation to the instability of the channel.

2.3 Bitrate Adaptation
To remedy the dependence of content delivery systems on network conditions, adaptive bitrate
(ABR) algorithms have emerged [11, 61, 63, 71, 100, 114, 137, 168, 172]. The majority of the existing
bitrate adaptation methods reside on the client side, complying with the Dynamic Adaptive Stream-
ing over HTTP (DASH) standard [138] and enabling large-scale deployment by applying only
client-side modifications [11]. Under this scheme, the client device first monitors its instantaneous
bandwidth (Networking Estimator in Figure 1) to assess the current network state [71, 100], or the
occupancy of its Playback Buffer [63, 137], or both [4, 136, 168]. Next, the ABR Controller tunes
accordingly the per-segment bitrate that it requests from the server and configures the client’s
codec to decode at the selected rate. On the remote side, the server encodes each video segment
with the specified bitrate and responds to the Segment Downloader’s pull request. Overall, ABR
techniques function as a way to control the network footprint at run time and thus help to min-
imize rebuffering. Although ABR has been significantly improved through deep learning-based
algorithms [41, 60, 61, 114, 172] to better perform under unexpected settings, it often fails in scarce
network conditions as it relies solely on network resources.

2.4 Neural Enhancement
Neural enhancement aims to restore and recover the quality/resolution of visual input. As this
problem is inherently ill-posed (i.e. many high-resolution solutions can be downsampled to the
same low-resolution image), most works enforce a strong prior to mitigate its ill-posed nature.
To this end, most state-of-the-art approaches utilize CNNs to capture the prior as it results in
superior visual performance. These methods train a model to either map a low- to a high-quality
image using exemplar pairs [34, 78, 104] or exploit the internal recurring statistics of the image to
enhance/upscale it [130].
The primary paradigm of using neural enhancement models in content delivery systems com-

prises the transmission of compact low-resolution/low-quality content followed by its subsequent
enhancement on the receiver side through the enhance-capable models [165, 166]. In this manner,
the transfer load is tunable by means of the upscaling factor (for SR) and the degree of compression,
controlling the system’s network footprint and the associated bandwidth requirements. Therefore,
neural enhancement opens up a new dimension in the design space by introducing a trade-off be-
tween computational and network resources, effectively overcoming existing systems’ sole reliance
on network resources. To this end, existing systems may choose to independently optimize the
utilization of these neural enhancement models [79, 92, 167] or integrate them within existing ABR
algorithms [28, 164, 166].

3 NEURAL ENHANCEMENT AND ITS DEPLOYMENT CHALLENGES
So far, a wide range of neural enhancement models and techniques have been integrated in content
delivery systems. Although the computer vision field of neural enhancement includes both SR
and image enhancement neural networks, CDS generally adopt SR models as reducing the spatial
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Table 2. Comparison of neural enhancement models used in CDS (Section 4) for commonly-used scaling
factors on standard benchmark datasets

Scale Model Params
(K)

Mult-Adds
(G)

Set5 [12]
PSNR/SSIM

Set14 [162]
PSNR/SSIM

B100 [115]
PSNR/SSIM

Urban100 [59]
PSNR/SSIM

VDSR [78] 665 612.6 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140
CARN [3] 1,592 222.8 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256

2× IDN [64] 552 202.8 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196
EDSR [104] 40,711 9384.7 38.11/0.9601 33.92/0.9195 32.32/0.9013 32.93/0.9351
MDSR [104] 7,953 1501.5 38.11/0.9602 33.85/0.9198 32.29/0.9007 32.84/0.9347
RCAN [175] 15,444 3526.8 38.27/0.9614 34.12/0.9216 32.41/0.9027 33.34/0.9384
VDSR [78] 665 612.6 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524
CARN [3] 1,592 90.9 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837

4× IDN [64] 552 89.0 31.82/0.890 28.25/0.7730 27.41/0.7297 25.41/0.7632
EDSR [104] 43,070 2894.5 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033
MDSR [104] 7,953 410.6 32.50/0.8973 28.72/0.7857 27.72/0.7418 26.67/0.8041
RCAN [175] 15,592 916.9 32.63/0.9002 28.87/0.7889 27.77/0.7436 26.82/0.8087

dimensions is more effective at reducing network usage. An exception to this approach is a subset
of systems [54] that repurpose SR models for image enhancement by feeding a low-quality input
– which is of the same resolution as its output – to the SR model. Moreover, existing systems
adopt CNNs for supervised single-image SR, due to 1) its efficiency as opposed to multi-frame
super-resolution [141, 143, 148] and 2) the availability of the degradation operation as compared to
blind unsupervised or self-supervised methods [9, 46, 130]. In this section, we provide an overview
of SR models (Table 2) used in existing content delivery systems (Section 4) and discuss their unique
deployment challenges.

3.1 Neural Enhancement Models used in Content Delivery Systems
After the first proposed super-resolution CNN [34] that only used 3 layers, VDSR [78] was the
first SR model that used a significantly deep (20-layer) convolutional network to obtain substantial
performance gains, and is one of the first SR models adopted for on-demand video streaming [165].
The model takes in an interpolated low-resolution input and passes it through twenty convolutional
layers, before merging through addition the result with a final residual connection from the
input. Each convolutional layer has 64 feature maps followed by a ReLU [119] activation function.
Although VDSR is relatively lightweight in terms of workload and memory requirements, Yeo
et al. [165] showed that real-time upscaling to 720p is only possible when the number of layers
and feature maps are dropped by half and targeting a powerful desktop GPU, highlighting the
computational challenges that will be discussed in Section 3.2.
EDSR [104], winner of the NTIRE 2017 Super-Resolution Challenge [144], and its multi-scale

variant, MDSR, are both heavily adopted in various content delivery systems such as NAS, LiveNAS,
PARSEC, Dejavu, LiveNAS and NEMO. MDSR, in particular, extends EDSR by supporting multiple
scales and consists of three stages: 1) a front-end feature extraction stage with separate feature
extractors per scale, 2) a number of shared intermediate layers, and 3) independent upsampling
layers for each scale. Both models adopt residual blocks from ResNet [49], without the batch
normalization [67] layers, as their building block. Specifically, the authors showed empirically
that the use of batch normalization [67] led to performance degradation in SR, a phenomenon
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that was further studied in [151], leading to the abandonment of batch normalization layers in
subsequent SR model designs. Unlike VDSR, EDSR and MDSR employ a variety of compute-efficient
techniques to reduce their computational complexity and memory footprint. For instance, they
take in a low-resolution input and upscale it only at the end [35] using the more efficient pixel
shuffle [129] module as opposed to the more costly deconvolution.

Nevertheless, EDSR and MDSR are still considerably heavier than VDSR, with 43 million and 8
million parameters for EDSR and MDSR respectively as compared to 0.6 million parameters for
VDSR. As a result, CDS often introduce further optimization strategies in order to alleviate the
excessive workload, allow scalability based on the client’s capabilities and achieve the desired
performance-latency trade-off. Such techniques include the generation of multiple single-scale
variants of EDSR/MDSR with fewer layers and feature maps, in order to support heterogeneous
clients with varying computational capabilities [164]. Apart from multiple CNN configurations,
early-exit strategies [57, 87, 142, 161] are often utilized to allow the client to adapt to their available
resources and execute a partially downloaded model [166]. Other methods to speed up execution
include training on the luminance channel as opposed to the RGB channels, deploying patch
selection to selectively upscale patches through the models [54], and parallelizing execution across
multiple GPUs for higher-end clients [79].

Zhang et al. [175] proposed RCAN, a model that achieves better performance at a lower cost as
compared to EDSR and is adopted in MobiSR [92] and SplitSR [108]. RCAN achieves this through
channel attention blocks and a residual-in-residual structure as its building block. Specifically,
instead of designing residual blocks like in EDSR [104], RCAN consists of residual blocks within
residual blocks, named residual groups. Each residual block in each group is followed by channel
attention blocks, allowing the model to focus on the more informative components of the image.
Similar to EDSR and MDSR, RCAN is computationally heavy and requires smaller variants for
it to be deployable. For instance, apart from manually tuning the number of layers and feature
maps, MobiSR employed a wide range of tensor decomposition and compression techniques to
approximate convolutions in RCAN. Similarly, SplitSR substitutes the standard convolutions with
channel splitting operations and tunes the depth of the RCAN to optimize for either quality or
latency.
Towards efficiency, Ahn et al. [3] proposed CARN which utilizes concatenated skip connec-

tions [58] in a block named cascading block, which consists of residual blocks and convolutions.
The authors showed that adding concatenated skip connections at both a block-wise and layer-wise
level allowed CARN to be more accurate and efficient compared to VDSR [78]. To further speed up
latency, IDN [64] proposed channel splitting [112], thereby only processing a subset of its feature
maps for some convolutions in each block. Moreover, IDN utilizes group convolutions [84] which
can be executed in parallel. Both CARN and IDN are computationally efficient SR models that are
able to run in real-time on a high-end desktop GPU and have thus been adopted by cloud-based
solutions such as CloudSeg [152] and Supremo [167], respectively.
Apart from the existing SR models and techniques that have already been adopted in content

delivery systems, we discuss other works from the SR literature that can be utilized to further
support and optimize the real-world deployment of CDS in Section 5. We refer the reader to existing
surveys [105, 156, 163] for a more comprehensive discussion on deep learning-based SR from a
computer vision perspective.

3.2 Challenges of Neural Enhancement
Despite their advantages, deep neural enhancement models pose a set of critical challenges. First,
neural enhancement CNNs are extremely expensive in terms of both computational and memory
burden. Key factors behind the resource-intensive nature of these models are the large spatial
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dimensions of feature maps throughout the model’s layers together with the excessive number of
memory accesses in memory-bound upscaling operations, such as Pixel Shuffle [129]. In this respect,
super-resolution CNNs are orders of magnitude larger than image discriminative models, with
TFLOP-scale workloads compared to the tens of GFLOPs for classification models [6]. Similarly, the
workload of efficiency-optimized SR models [35, 91] are measured in GFLOPs, whereas their image
classification counterparts [52] are measured in MFLOPs [6]. A common approach to significantly
reduce the peak run-time memory footprint is to split the image into patches that are processed
sequentially, with the partial results stitched together to produce the final upscaled image. Never-
theless, the computational cost is still a big challenge for real-time applications, especially when
targeting mobile platforms [28, 65, 92] where the latency per frame spans from 100s of milliseconds
up to seconds depending on the target image resolution.

Furthermore, models trained on standard datasets that aim to generalize across all videos/images
result in outputs of varying performance upon deployment and often fail catastrophically on
unexpected inputs [92, 165]. On the other hand, tailoring a CNN towards a specific video/image helps
to mitigate this drop in performance at the cost of additional training per video/image [53, 74, 128].
This is typically achieved by first pretraining a model on standard datasets and then producing
multiple specialized models by fine-tuning different model variants through additional training
iterations either per video category [165], per video [164, 166], per video segment [28], per video-
conference caller [54] or on a live video stream [79]. In this respect, a generalization-specialization
trade-off is exposed which system designers need to decide how to control based on the target
use-case.

4 THE LANDSCAPE OF CNN-DRIVEN VISUAL CONTENT DELIVERY
Despite their deployment barriers, several recent frameworks have incorporated neural enhance-
ment methods into their pipelines and introduced novel techniques for overcoming their challenges.
In this context, we survey the state-of-the-art visual content delivery systems that leverage neu-
ral enhancement models, taxonomizing them based on the type of content (on-demand or live,
video or image), and provide an analysis of how they counteract a the excessive computational
requirements and b the performance variability across different content.

4.1 On-demand Content Delivery Systems
4.1.1 On-demand Image Delivery. Image delivery systems consume significantly fewer network
resources than their video counterparts, therefore requiring considerably less bandwidth. Never-
theless, apart from reducing the load in a shared communication channel, these systems can help
users with a limited mobile data plan to save data. For instance, these systems can be deployed in
data-saving mobile app alternatives, such as Facebook Lite and Messenger Lite. In this scenario,
instead of disabling the downloading of content when the user is not on Wi-Fi, visual content can
be downloaded in low resolution to save data, and then be locally enhanced to high quality. In
this manner, users can continue to scroll through their feed or send picture messages at ease. This
applies to any image-centric application including news apps, dating apps, gallery apps, and many
others.

Additionally, as chipsets on commodity devices are gradually getting more powerful [6, 65], this
enables many of these applications to run fully on-device, avoiding the latency and privacy issues
of cloud or edge offloading. In this direction, Lee et al. [92] proposed MobiSR (Figure 2a), a system
that capitalizes over the heterogeneous compute engines of modern smartphones, e.g. CPU, GPU
and NPU, through a model selection mechanism to deliver rapid image super-resolution.
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As a first step, MobiSR derives two model variants by applying a wide range of compression
techniques on a user-provided reference model; the authors use a smaller variant of RCAN [175].
These compression techniques mainly consist of low-rank tensor decompositions, such as depthwise
separable convolutions [131], and other efficient model designs, such as channel splitting [112],
that have been successful in high-level vision tasks. The resulting Pareto-optimal models are then
assigned to the different available compute engines and a hardware-aware scheduler (Difficulty
Evaluation Unit (DEU)) is deployed during inference to rapidly process the patches of each input
image. Specifically, the DEU processes hard-to-upscale patches using a more compact model (𝑚1)
while feeding the easier patches to a larger model (𝑚2) to obtain higher quality, leveraging on
an insight that both large and small models perform similarly on hard-to-upscale patches, with
difficulty quantified using the total-variation metric [126]. Hence, the image quality is maximized
while meeting the applications’ latency constraints (challenge a ). With respect to challenge b ,
MobiSR is optimized to achieve higher overall performance through a generic model and does not
employ model specialization.

MobiSR, however, requires scheduling using multiple processors to leverage its benefits, and may
not be suitable in certain deployment scenarios. In this regard, Liu et al. [108] proposed SplitSR
(Figure 2f), a system that focuses on optimizing either quality or latency on a single CPU and,
thus, making it accessible to a wider range of smartphones and computational settings. Similar to
MobiSR, SplitSR mitigates challenge a through an efficient variant of RCAN [175]. The proposed
model, however, emphasizes the use of channel splitting operations, instead of depthwise separable
convolutions, and tuning the model’s depth in order to reduce the DNN workload. The final DNN
model is optimized for either quality or latency. Furthermore, SplitSR extends the TVM deep
learning compiler [20] to support operations required in their model and generate highly optimized
implementations for mobile CPUs. Finally, although the models in SplitSR achieve higher image
fidelity when compared to the models proposed in MobiSR, both frameworks do not specifically
handle the variability in upscaling quality across images (challenge b ). Despite being the state-of-
the-art for image-centric on-device use-cases, the processing rates achieved by both MobiSR and
SplitSR are still below 24-30 fps and hence not yet suitable for real-time video applications.

4.1.2 On-demand Video Streaming. Video-on-demand (VOD) services allow users to watch content
at their suitable time from any Internet-enabled device. The user selects a video which is then
fetched and streamed by a video server to the user device. With the majority of VOD services being
interactive, on-demand video streaming systems have to yield low response time and minimal
rebuffering while not compromising visual quality in order to maximize the QoE. In achieving these
targets, the bottleneck lies in the link between the video server and the client with the bandwidth
of the connection directly affecting the end performance.

Yeo et al. [165] presented one of the first works that employed neural enhancement to overcome
this limitation and offered a way to utilize the clients’ computational power. Specifically, the authors
first proposed grouping videos into clusters according to their category (basketball, athletics,
etc.) through a clustering module. This classification can be performed by either utilizing image
classification models or using the video’s metadata and predefined categories provided by content
platform providers, such as YouTube. A specialized SR model, VDSR [78], is then trained for each
cluster, reducing the performance variation (challenge b ) as compared to using a single generic
model. Besides RGB frames, they also proposed the use of more compact representations such as
their edges or the luminance channel, on top of tuning the spatial size of the frames, to further
reduce both the bandwidth and computational resource usage. As these alternative representations
contain less information than their corresponding RGB frames, the authors utilized Generative
Adversarial Network-based [45] (GAN-based) training to learn the distribution of natural textures
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in order to synthesize natural-looking frames. Although the authors showed that these compact
representations did not work well in practice with the H.264 codec, they were adopted in later
works, such as Dejavu [54], to tackle challenge a in different use-cases.

To handle the excessive computational needs of neural enhancement models (challenge a ), the
authors constrained their system to work with up to 720p videos and targeted homogeneous client
platforms hosting powerful desktop-grade GPUs. This limitation was subsequently addressed to
accommodate clients with heterogeneous computational capabilities in their extended proposed
framework - NAS [166].

In NAS [166] (Figure 2b), the authors addressed the problem of heterogeneous clients through the
use of early-exit SR models of varying sizes and computational workload, allowing each client to
select the appropriate model segments (challenge a ) based on both their computational capabilities
and run-time device load. To this end, they extended previous reinforcement-learning-based (RL-
based) ABR algorithms [114] to decide not only the bitrate (ABR), but also the fraction of the SR
model (Model Selector) to be transmitted for each video segment. Specifically, the RL-based network
is optimized on a modified QoE metric to take into account the enhancement quality of the content,
as detailed in Section 2.1, in order to make the aforementioned decisions. These model segments are,
therefore, progressively sent, incrementally updating the model at the client until the full model
is delivered. Further mitigating challenge a , the authors based their early-exit SR model on a
smaller variant of MDSR [104], which is quantized at 16-bit half-precision floating-point format and
executed on a desktop-grade GPU on the client side in order to hit the real-time requirement. Finally,
instead of categorizing videos into coarse clusters as in [165], NAS tackles challenge b by first
pre-training a generic SR model and then fine-tuning a specialized model for each video. Overall, as
shown in Figure 2b, the client selects the bitrate 𝑏 for the i-th video segment and the fraction 𝑗 of the
SR model for the particular video and receives the i-th low-resolution segment 𝑠𝑣𝑖 and the associated
fraction of the specialized model𝑚𝑣

𝑗 for video 𝑣 that are used by the Super-resolution Processor (SRP)
– which is part of the Neural Video Codec in Figure 1 – to locally produce a high-resolution output.

Although NAS is able to support heterogeneous clients, these clients are assumed to have at
least the computational power of a desktop-class GPU. To support lower-end commodity devices,
existing on-device SR systems like MobiSR are inadequate at upscaling in real-time. To this end,
Yeo et al. [164] proposed NEMO, a framework that leverages frame dependencies using information
from the video codec VP9, trading quality degradation for on-device real-time video streaming and
reduced energy consumption. Instead of running SR per frame, NEMO applies SR to selected frames
called anchor frames, mitigating challenge a , and uses the cached super-resolved anchor frames
and the frame dependencies defined in the codec to upscale the remaining non-anchor frames.
Specifically, the client runs a SR-integrated codec that refers to a list of anchor frames sent by
the server in order to decide whether to run the model or reuse previously cached super-resolved
frames for anchor and non-anchor frames respectively. For a non-anchor frame, following the
VP9 codec, the SR-integrated codec first uses a reference index to select a previously upscaled
frame from the Frame Cache. After this step, the provided motion vector is upscaled via bilinear
interpolation and motion-compensated before it is used to warp the selected frame. Lastly, the
residual block of the compressed frame is decoded and upscaled via bilinear interpolation before
adding to the resulting warped frame.

Although the VP9 codec provides key frames, which have a high-degree of reference from other
frames, NEMO deploys its own anchor frame selection in order to adhere to a given performance
threshold. The algorithm first computes the video quality from all possible anchor point sets in
a video and then, following a greedy approach, iteratively selects an anchor point that results in
the maximum video quality gain until it reaches the quality requirement. Running the quality
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Fig. 2. Overview of on-demand delivery systems: 2a) MobiSR [92], 2b) NAS [166], 2c) NEMO [164],
2d) PARSEC [28], 2e) Supremo [167], 2f) SplitSR [108]. Cyan blocks indicate novel components introduced by
each system.

measurements over all anchor point sets, however, is infeasible. Therefore, in order to speed-up the
algorithm, the authors selected the most impactful anchor point in each frame as a proxy, effectively
reducing the number of anchor point sets to the number of frames. The estimated video quality
can thus be quickly calculated as an average of each estimated frame quality, which is computed
from a single anchor point, rendering the algorithm computationally feasible.
Following NAS, NEMO alleviates challenges a and b and supports heterogeneous clients by

preparing a list of models of various sizes and computational demands, along with a list of their
anchor frames generated offline by its anchor frame selection algorithm, for each video and their
bitrate version. To guarantee real-time processing, each compute unit in the client processes an
anchor and a non-anchor frame once upfront in order to estimate the overall processing time
required for other videos. Given this estimation, the client then selects the available configuration
(Model Selector) that maximizes quality and meets the real-time constraint.

4.1.3 360° Video Streaming. Compared to regular videos, streaming 360° videos has significantly
elevated bandwidth requirements. To alleviate this, existing systems employ viewport prediction
techniques [37] which estimate which part of the video the user will look towards and only
download this spatial content. However, accurate viewpoint prediction is still difficult to achieve,
exacerbating the problem as missing patches of the current viewpoint need to be fetched at the
time of viewing. Therefore, existing solutions [123] send additional patches in the neighborhood of
the predicted viewport patches. Although neural enhancement models can be utilized to mitigate
this challenge, the larger spatial dimensions of 360° content further aggravates challenge a and
calls for dedicated deployment solutions.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:14 Lee and Venieris, et al.

In this context, Dasari et al. [28] proposed a 360° video streaming framework named PARSEC
(Figure 2d). Unlike previous works, the authors extended theAdaptive Streaming Controller (Figure 1)
logic to decide on the low-resolution (LR) patches to be upscaled (Frame Selector) and the bitrate of
high-resolution (HR) patches to be downloaded (ABR) based on 1) the networking conditions, 2) the
client’s computational resources, 3) the viewport prediction (Viewport Estimator) and 4) the quality
(PSNR) of both the HR and the upsampled patches. Since the proposed ABR algorithm is designed
to maximize QoE and can thus selectively decide which patches are upscaled or downloaded,
challenge b is mitigated. Moreover, due to the substantial increase in spatial content of 360° over
conventional videos, each manually tuned efficient SR model, similar to that used by NAS, is fine-
tuned for each video segment (Model Selector) as opposed to each video.

To overcome challenge a , PARSEC uses an extreme upscaling factor of ×64 on top of the H.265
compression that allows all ultra-LR patches to be transmitted, alleviating the limitations of view-
point prediction. Additionally, each SR model is varied depending on the targeted quality and the
length of the video segment, resulting in shorter inference times for shorter video segments.

4.1.4 Cloud-assisted Content Delivery. In most content delivery scenarios, the client that is request-
ing the content adaptively allocates the compute needed for enhancement between the server and
the client through its ABR algorithm as seen in PARSEC, NAS, and many others. However, for cases in
which the ABR algorithm fails, the user’s QoE is heavily impacted as the client struggles to handle its
workload. In order to accommodate such cases, computation offloading can be deployed, resulting
in a trade-off between performance and network utilization. Specifically, offloading content to be
enhanced offers faster processing, but imposes an extra cost in the bandwidth, along with additional
privacy issues, due to the uploading and downloading of low-quality and high-quality content,
respectively. Furthermore, this scheme is mainly applicable in use-cases where the low-resolution
image already resides in the client device, e.g. pre-downloaded images or videos or zooming in
camera-captured images. In such cases, there is no transmission cost to obtain the LR image and
hence the additional bandwidth overhead due to offloading might be justified.
To this end, Yi et al. [167] proposed Supremo (Figure 2e), a framework that enables real-time

mobile SR by selectively offloading computation to the cloud. In order to mitigate challenge a ,
Supremo only runs bicubic interpolation on-device and uses a lightweight variant of the IDN [64]
SR model to be run on the resource-rich server, while performing patch selection to only transmit
key patches. Specifically, Supremo’s patch selection mechanism starts by extracting the edges,
using the Canny edge detector, from each image, dividing the image into blocks, and sorting the
blocks according to edge intensity; the highest edge intensity has the highest priority for offloading,
as edges are degraded the most when upscaled using a neural-based model compared to using
plain bicubic interpolation. Next, depending on the networking conditions, latency requirements
and their ranking, these patches are sent in parallel to the cloud to be upsampled through the SR
model. To further reduce the network footprint required to download the super-resolved patches,
Supremo exploits the sparsity of the difference between the super-resolved patches and bicubic-
upsampled patches. As these differences are often very sparse, encoding them through the Residual
Encoder, which resembles JPEG encoding, results in a heavily compressed signal, thus minimizing
bandwidth. For video-centric use-cases, Supremo also deploys a caching mechanism to exploit
temporal redundancy by reusing super-resolved frames on matching blocks (Frame Cache), matched
using motion estimation [177]. Similar to MobiSR, Supremo handles challenge b by employing
a generic model that aims to maximize the average upscaling performance across all processed
images.
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Fig. 3. Overview of live streaming systems: 3a) CloudSeg [152], 3b) Dejavu [54], 3c) LiveNAS [79]. Cyan
blocks indicate novel components introduced by each system.

4.2 Live Content Streaming Systems
4.2.1 Streaming for Video Analytics. Pipelines for video analytics [25, 36, 53, 171] perform real-time
intelligent tasks over user inputs in order to enable the development of novel applications such
as telepresence [170] and augmented reality apps [106]. Such tasks span from scene labeling and
object detection to face recognition. To meet the real-time performance requirements across diverse
hardware platforms, such systems often rely on cloud-centric solutions. In this setup, the client
device transmits the input frames to a powerful server for analysis and collects back only the result.

Naturally, these video analytics frameworks can benefit from the transmission of lower-resolution
or lower-quality images under bandwidth-constrained settings. However, the use of low-quality
images is known to reduce accuracy [15, 21] as some of these degraded images do not contain
the sufficient information for the task at hand. For instance, high-frequency details, such as the
texture of an object or the facial identity of distant persons, during downsampling [14]. Therefore,
these frameworks can use additional server-side computation to deploy neural enhancement
models, recover the quality of the images and thus minimize the accuracy loss of the target task.
To achieve this goal, Wang et al. [152] proposed CloudSeg (Figure 3a) that jointly trains an SR
model (CARN [3]) together with its target analytics task, i.e. semantic segmentation (ICNet [176]).
Specifically, they trained CARN using gradients computed from both the content loss between the
HR and the super-resolved image and the accuracy difference between using both images in ICNet.
During inference, the SRP feeds both the LR image and super-resolved image to the pyramid

(also known as multi-scale) segmentation model, avoiding any redundant downsampling process.
Towards efficiency (challenge a ), CloudSeg employs frame selection at the client side by deploying
a small convolutional neural network (CNN ) that estimates pixel deviation in segmentation maps
from low-level features of consecutive frames [96] in order to skip redundant stale frames (Frame
Selector). Finally, CloudSeg overcomes challenge b by training both the SR and segmentation
model on the same dataset and falling back to streaming in high resolution whenever the analytics
accuracy falls below a threshold, i.e. the Quality Feedback Mechanism guides the ABR controller.
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4.2.2 Video-Conferencing. To sustain the interactive communication between callers, video-confe-
rencing requires low response time. In an effort to achieve that, existing services [40] often adopt
conservative strategies that relax the bandwidth requirements, but also compromise visual quality.

In this context, Hu et al. [54] observed that in contrast to generic live streaming, video-conferencing
has the property of visual similarity between recurring sessions and designed Dejavu (Figure 3b) to
exploit these unique computational and specialization opportunities; video calls that take place
periodically and in the same or similar rooms have inherent redundancy. The developed system
starts with the offline training of image enhancement models that are specialized per caller (chal-
lenge b ). In this process, the model learns to improve the video quality by increasing its encoding
rate without changing the spatial resolution.

Upon deployment, when a video-conference session is established, the associated caller-specific
enhancement model is transferred from a client to the other and vice versa (𝑚 {𝑘,𝑗 }

SR in Figure 3b).
During the call, the frames from the caller are re-encoded to a lower quality at the same resolution
prior to transmission, reducing the bandwidth usage, and the quality is enhanced on the receiver
side through the caller-specific enhancement model.
To address challenge a , Dejavu uses several techniques. Apart from designing an efficient

variant of EDSR that is trained only on the luminance channel (Section 3), a powerful GPU is
assumed to be available on each calling side. Additionally, Dejavu introduces a patch-scoring
CNN that predicts the expected quality gain for each image patch. In this manner, only the top-𝑘
patches (Frame Selector), which consist of mainly edges and complex textures, that are expected to
yield the highest quality improvement are processed by the quality-enhancing neural network to
lower the run-time resource usage.

4.2.3 Live Video Streaming. In contrast to VOD services that focus on stored content, live streaming
targets videos produced in real-time. In this case, an additional bottleneck is introduced on the
upstream client-to-server channel: a degraded quality from the streaming user would propagate
to the end users that watch the video, leading to additional challenges in sustaining high QoE.
Moreover, while stored content in VOD or the recurrence of video-conferencing allows for offline
specialization of the enhancement models, the real-time dynamic nature of live streaming requires
methods to tailor the models online to the incoming video. Online learning, however, requires
extra bandwidth on top of the stream as the parts of the high-quality stream often needs to be
transmitted for model fine-tuning.

To tackle these challenges, Kim et al. [79] proposed the LiveNAS system (Figure 3c) that focuses
on optimizing the upstream transmission from streamer to server. In this system, a generic SR model,
pre-trained on previously played similar streams, resides on the server side. Upon deployment, the
streamer uploads a series of low-resolution frames which are then enhanced at the server side by
the Super-resolution Processor (SRP in Figure 3c).

To counteract the performance variability across diverse content (challenge b ), LiveNAS intro-
duces an online learning scheme that tailors the model to the particular unseen video. This scheme
consists of selectively picking high-quality patches using the Training Sampler and transmitting
them from the streamer to the server using the Pacer (Figure 3c). Since the patches needed for
online training share bandwidth with the video, it is crucial to send only the patches with the
highest expected impact. Hence, the Training Sampler detects patches that are hard to compress
with high quality, by calculating the PSNR between HR patches and their bilinearly interpolated
LR encoding, and selecting the lowest-PSNR patches. The Pacer, on the other hand, is responsible
for allocating the available bandwidth between the low-resolution patches to be upscaled and
the high-resolution training patches by adaptively tuning the respective bitrate. This is achieved
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Table 3. Comparison of Visual Content Delivery Systems

System Ref. CNN Model Computational Optimizations Model Specialization CNN Execution

MobiSR [92] RCAN [175] 1) Difficulty-aware model selection
2) Parallel execution
3) Efficient convolutions and upsampling

Generic model Client

Yeo et al. [165] VDSR [78] 1) Powerful desktop clients
2) Homogeneous clients
3) Up to 720p

Offline per video category Client

NAS [166] MDSR [104] 1) Powerful desktop clients
2) Early-exit models
3) FP16 quantization

Offline per video Client

NEMO [164] MDSR [104] 1) Key-frame selection
2) Early-exit models

Offline per video Client

PARSEC [28] MDSR [104] 1) Ultra low-resolution input
2) Manually-tuned models

Offline per video segment Client

Supremo [167] IDN [64] 1) Patch selection
2) Lightweight model IDN-lite

Generic model Server

CloudSeg [152] CARN [3] 1) Frame selection Generic model Server
Dejavu [54] EDSR [104] 1) Patch selection

2) Luminance-only training
3) Powerful desktop client

Offline per caller Client

LiveNAS [79] MDSR [104] 1) Patch Selection
2) Parallel execution

Online per video Server

SplitSR [108] RCAN [175] 1) Efficient convolutions and model depth
2) Compiler optimizations for CPU

Quality- or latency-optimized Client

through a scheduling algorithm (Sched in Figure 3c), which aims to optimize the video quality
together with the expected online quality gain given the total training patches thus far.
On the server side, the transferred high-resolution patches are used by the Online Trainer to

fine-tune the SR model. Further mitigating challenge b , recent patches are weighted more than
older patches, better reflecting the current content of the stream. The invocation frequency of the
Online Trainer is controlled based on an adaptive mechanism that detects training saturation and
scene changes, periodically sending feedback to the client (Quality Feedback Mechanism). Training
saturation, in particular, is tracked by measuring the performance gain from the two most recent
models, suspending training and sending a signal to the client which sets the patch bitrate to a
minimum value if the gain falls under a threshold consecutively. Scene change, on the other hand,
is identified by comparing the performance between the initial and latest model, resuming online
training with recent patches and prompting the client to reset the patch bitrate to its initial value.
Thus, the amount of training for each live stream is adapted to maximize performance without
excessive resource usage. Finally, to alleviate challenge a , LiveNAS supports scale-out execution by
parallelizing the SR computations across multiple GPUs (e.g. three GPUs for 1080p to 4K real-time
enhancement), if available, on the server.

4.3 Discussion: Dataset Collection
A challenging issue of neural enhancement-based CDS systems is the collection of data for the
training of the employed DNNs and the end-to-end evaluation of the whole system. Depending
on whether the system is image-centric, video-centric or targets a more specialized application
(e.g. 360°videos, semantic segmentation or video-conferencing), each CDS employs a different
strategy for the data collection stage. Image-centric systems, such as MobiSR, Supremo and SplitSR,
employ broadly used super-resolution datasets, including the DIV2K dataset for the training of their
DNN models and Set5, Set14, B100 and Urban100 for the evaluation stage. Video-oriented systems,
such as NAS, NEMO and LiveNAS, rely on ad-hoc methodologies for the collection of datasets from
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existing service providers, such as YouTube. Such methodologies typically comprise a selection of
the top-N most popular videos from the top-K most popular categories or channels on the service-
provider’s platform. For instance, NEMO, which focuses on on-demand video delivery, selected three
4K videos from the top-10 most popular categories on YouTube, while LiveNAS, which targets
live streaming, used the most recent streams from the top streamer in Twitch’s five most popular
categories and one video for each of the top-4 most popular live categories on YouTube. On the
other hand, PARSEC used the most broadly used 360°head movement dataset [109] that contains
head movement from 50 users on 10 360°videos from YouTube. CloudSeg employed the widely
used Cityscapes [24] which is a semantic segmentation dataset with urban scenery. Finally, for
Dejavu, the authors constructed a proprietary dataset by conducting five mock interviews under the
same conditions, i.e. same meeting room on the same day, and recording them using a commodity
smartphone on a tripod. Regardless of the dataset used, the respective low-quality counterpart can
be synthesized from the original high-resolution image using a uniform degradation operation,
such as the widely used bicubic interpolation, to form input-output pairs for supervised training.
Although simple, these degradation operations suffice as the same degradation operations are used
during inference. Nonetheless, the choice of dataset would directly affect the visual quality and
the upscaling process will be considerably impacted if the data distribution encountered at run
time greatly differs from the training data distribution, resulting in fail-safe mechanisms such as
directly sending the HR patches [152]. To counteract this, we provide directions to improve the
robustness of these models in Section 5.4.

4.4 Discussion: Trends in Neural Enhancement-based Content Delivery Systems
State-of-the-art neural enhancement-based content delivery systems continue to face tougher
deployment challenges as compared to earlier systems due to the naturally evolving landscape of
various applications and devices. These recent systems have to take into account of a wider range
of heterogeneous clients and thus ensure backward compatibility with older devices. On top of that,
existing mainstream applications, such as live streaming and video calls, involve dynamic content,
exacerbating challenge b . Newly emerging applications such as 360° videos, in contrast, have
unprecedented computational demand in order to support new immersive experiences at higher
resolutions (challenge a ). In response to neural enhancement deployment challenges, existing CDS
have deployed numerous mitigation techniques as summarized in Table 3. Although the diversity
of target applications, with their unique requirement and challenges, does not allow us to draw
conclusive and meaningful results on the performance comparison between the existing neural
enhancement-based CDS, the following observations are made.
Frameworks that combine both lightweight and adaptive/scalable neural networks demonstrate

higher adaptability. This property can be observed in CDS such as NAS, NEMO, MobiSR and SplitSR.
On the one hand, NAS and NEMO employ: 1) a lightweight model design through a compact variant
of MDSR [104] with 16-bit quantization, together with 2.1) a per-video catalog of models with
diverse complexity-performance trade-offs that enables the static model selection based on the
client device nominal capabilities, and 2.2) a scalable design of individual models that enables the
dynamic adaptation of model complexity to the run-time device load. Adopting an alternative
approach, MobiSR combines: 1) a lightweight compressed version of RCAN [175], together with 2.1)
a static model selection based on the target device capabilities and model performance and 2.2) a
run-time model selection scheduler that pins a distinct model to each compute engine of the target
platform and dispatches each patch to the suitable model-engine pair. Similarly, SplitSR employs
a customized version of RCAN, optimized for either quality or latency. Such approaches provide
greater flexibility at both design and run time. In this manner, CDS have more room to adapt to
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static (e.g. device capabilities) and dynamic constraints (e.g. device load, networking conditions),
meet the latency and visual quality requirements, and maximize QoE.

Applying informed frame/patch-selective enhancement through a quality-aware mechanism tends to
radically improve QoE with minimal visual quality degradation. NEMO and Supremo’s caches that store
previously super-resolved frames enables the reuse of already computed results, thus skipping the
costly processing overhead of neural enhancement.With the goal to sustain high visual quality in the
challenging task of 360° video delivery, PARSEC selectively chooses which frame patches to enhance
and which to directly download in high resolution. A similar strategy is adopted by CloudSeg with
the aim to maximize the accuracy of the target semantic segmentation task. In another direction,
LiveNAS employs frame selection to determine which high-resolution frames should be transmitted
to the server side for further neural model fine-tuning on the current live stream. Across these CDS,
the frame/patch selection criteria aim to either select content based on their upscaling or encoding
difficulty or the degree of temporal redundancy. For instance, patches with complex textures and
edges are often prioritized to be enhanced in order to maximize performance, or frames with high
correlations with subsequent frames are cached after enhancement in order to be reused.
Specializing models to specific content tends to reduce the complexity of neural model design and

rely more on system-level solutions. General mitigations to challenge b involve fine-tuning from a
pre-trained generic model to the targeted content per scale for each client’s computational regime.
With the exemption of MobiSR, Supremo, and CloudSeg, all existing CDS adopt a variant of this
model specialization approach. These systems require𝐶 ∗𝑆 ∗𝜖 trained models where𝐶 is the number
of unique content (i.e. entire video, video cluster or video segment), 𝑆 is the number of available
scales for each content, and 𝜖 is the number of supported computational regimes across its clients
(e.g. low-end, mid-tier and high-end platforms). This computational load is a one-time cost for offline
applications, but imposes additional challenges for their online counterparts, such as LiveNAS, as
discussed in Section 4.2. This approach relieves CDS designers from designing sophisticated neural
enhancement models by deriving multiple specialized and scale-specific variants from a single
reference model, with the CDS deploying the suitable one as requested by the client. Nevertheless,
it leaves space for further model-level exploration as discussed in Section 5.2.

5 FUTURE DIRECTIONS
In this section, we propose various approaches that are drawn from the latest computer vision
research and provide insights on how neural enhancement can further benefit content delivery
systems. Specifically, we highlight promising directions to further address the challenges of neural
enhancement.

5.1 Improving VisualQuality
One of the main open challenges in neural enhancement algorithms is the design of a metric that
will correspond well with human raters. As mentioned in Section 2.1, distortion-based metrics,
such as PSNR [44] or SSIM [155], which aim to minimize the per-pixel error between two images,
have been extensively shown to improve image fidelity at the cost of perceptual quality, leading to
blurry and unnatural outcomes [88]. On the other hand, optimizing only for a perceptual-based
metric such as Naturalness Image Quality Evaluator (NIQE) [117] and Learned Perceptual Image
Patch Similarity (LPIPS) [174] will lead to more natural-looking images at the expense of fidelity
and therefore the occasional occurrence of image artefacts. Mathematically, there is a trade-off
between fidelity and perceptual quality [13].
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As all the existing neural enhancement frameworks (Section 4) train their models using a
distortion-based metric, the outputs of these models are accurate, but may look unnatural. Al-
though this will benefit video analytics frameworks, such as CloudSeg, having blurry outputs
will undermine the goal of other content streaming systems, such as Dejavu and LiveNAS. To
close this gap, these systems can benefit further by utilizing recent methods proposed in computer
vision to train and optimize their neural enhancement models. Some of these works focus on
striking an optimal point between image fidelity and perceptual quality by optimizing for both
distortion-based and perceptual-based metrics [91, 151]. Specifically, these works often optimize
their models jointly on L1/Mean-Squared-Error (MSE) losses for image fidelity and a variety of
losses, including perceptual loss [73], adversarial loss [45], and contextual loss [116], for percep-
tual quality. Additionally, other methods such as interpolating between a distortion-based and
perceptual-based output image [31] or model [150, 151], or introducing additional priors [111, 133],
can also be used to alleviate undesirable artefacts caused by optimizing only for perception-based
metrics. For instance, utilizing rich texture priors found in pre-trained generative models has been
shown to result in images that are high in both fidelity and perceptual quality [16]. Although the
aforementioned works have found success in achieving high visual quality content, most propose
techniques and models that are too computationally demanding to be deployed in existing CDS.
Hence, there are potential gaps in the literature to realize the benefits of utilizing these approaches.
For video-based solutions, the majority of existing vision works utilize temporal informa-

tion by aligning and fusing spatial information from multiple frames to further boost image
fidelity [17, 75, 102, 127]. Specifically, these CNN- or RNN-based solutions align adjacent frames by
warping each supporting frame to a reference frame using the respective optical flow. These optical
flows are usually estimated using either traditional motion estimation algorithms [8] or CNN-based
approaches, such as spatial transformer networks [69] and task-specific motion estimation net-
works [66, 125, 139]. Instead of utilizing an explicit component for motion estimation, another
line of work [72, 143, 148] has proposed performing alignment implicitly through deformable
convolutions [27, 178] or dynamically-generated filters.
As a result of effectively utilizing multiple frames to upscale each frame, these multi-frame

approaches are able to achieve better restoration performance as compared to their single-image
counterparts. Besides improving the visual quality spatially, temporal interpolation methods [158,
180] can enable a system to increase the achieved frame rate, and hence the QoE, by estimating
intermediate frames rather than transferring them and applying super-resolution. In thismanner, the
bandwidth requirements are reduced by cutting both the content’s spatial and temporal resolution.
Nonetheless, video-based enhancement solutions are more computationally demanding than image-
based solutions due to additional processing in the temporal domain. Therefore, these techniques can
be utilized more effectively in CDS such as NAS and CloudSeg, which perform their computations
on powerful desktop clients and on server-grade processors, respectively.

With regards to QoE, the actual bitrate or an estimated bitrate, given the performance of themodel,
is used to quantify the content’s visual quality in relations to the user’s experience (Section 2.1). As
the amount of computational resources continue to grow in commodity hardware, the content’s
spatial quality will be largely dependent on the performance of the model. Therefore, there is a
need for better designs of the QoE metric to reflect these changes for neural enhancement-based
CDS.

5.2 Utilizing Efficiency-optimized Models
Most neural enhancement frameworks generally adopt popular full-blown SR models (Table 3)
and revise them in order to speed up training and inference or fit into the limiting constraints
for client-side computation. However, these revisions are usually suboptimal or, in some cases,
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detrimental. For instance, PARSEC uses of batch normalization [67] to speed up training, reducing
image fidelity [104] and introducing image artefacts [151]. Therefore, instead of naively scaling
down andmodifying full-blown SRmodels, these systems can leverage existing off-the-shelf efficient
models that are specifically optimized for both performance and efficiency in order to deliver higher-
quality enhancement at a lower computational cost (challenge a ). These models include manually
designed variants such as IDN [64] – already used by Supremo, automatically-designed variants
such as ESRN [134] and TPSR [91] through neural architecture search [179], or even quantized [93]
and binarized SR models [113, 160] if the hardware supports their efficient execution.

5.3 Faster Model Specialization through Meta-learning
To mitigate challenge b , some systems specialize a model for each specific image/video through
overfitting. This approach results in a computationally expensive process (challenge a ) as each
model requires thousands of gradient updates in order to be adequately specialized. In response,
later systems introduce a two-stage approach. First, a generic neural enhancement model is pre-
trained offline, and then fine-tuning is applied either offline or online. For instance, NAS first trains
a generic model on an external dataset before using its weights to fine-tune a separate model for
each video, amortizing in this manner the one-time offline training cost.

To further speed up and improve the performance during the fine-tuning step, these works can
adopt a meta-learning approach [51] in order to find a more optimal set of initialization parameters
for fine-tuning. In other words, pre-training a neural enhancement model via meta-learning on
an external dataset will require fewer gradient updates during the fine-tuning stage, therefore
requiring fewer computational resources and leading to higher performance compared to brute-
force fine-tuning [121, 132].

This fast adaptation is achieved by training the model so that it is easy to fine-tune. Specifically,
besides having a regular training loop that optimizes the model on an external dataset, there is an
additional inner loop that computes the adapted parameters given a different set of paired images.
The main set of parameters is then iteratively updated based on the derivative of the loss with
respect to the adapted parameters, resulting in a set of parameters that can quickly adapt to a test
image during inference. Therefore, the quick adaption of the meta-trained parameters can further
save the computations required to fine-tune in both offline (e.g. on-demand streaming) and online
cases (e.g. live streaming).

5.4 Improving Robustness through Conditional Enhancement
Originally, the usage of SR was to improve the quality of a low-quality image under the assumption
that the high-quality version was not available. As such, one of the key benefits of deploying an
SR model as a neural enhancement unit is its ability to work without the high-resolution ground-
truth. However, in the context of many content delivery settings, the ground-truth is available
and the service provider scales it down to a lower quality in order to minimize the transmission
cost. Therefore, instead of discarding the high-frequency information during downsampling, this
information can be encoded in a latent variable and transmitted, along with the low-quality frame,
to the receiver in CDS. The upsampling process can then be conditioned on that variable, therefore
counteracting performance variability (challenge b ) by allowing the same model to better handle
differing content instead of having to overfit one model for each content. To this end, several
computer vision works leverage the downscaling process during the upscaling process using neural
image rescaling techniques to further boost image reconstruction. For instance, a downscaling
CNN can be trained jointly with an existing SR model as shown in [77] and techniques such as
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encoder-decoder frameworks and invertible neural networks can also be utilized as shown in [95]
and [159] respectively.

Despite its benefits, neural-based image rescaling incurs an additional cost of executing a down-
scaling neural network as compared to that of interpolation methods, utilizing additional com-
putational resources for a more robust improvement in visual quality. Therefore, image rescaling
techniques may be more suitable for on-demand video systems, such as NAS and PARSEC, in which
the downscaling cost is an offline one-time cost across videos. Additionally, although these ap-
proaches have not been shown to fully mitigate challenge b , they can significantly reduce the
dependency of having to frequently transmit model segments for each content. Ultimately, as
models get more robust to varying inputs, they can be deployed once across varying content and
even across various applications.

5.5 Dynamic Deep Neural Networks
A growing body of work in the computer vision literature is investigating the design and deployment
of dynamic deep neural networks. Such models employ conditional execution mechanisms in
order to provide a run-time tunable accuracy-complexity trade-off, by scaling up and down their
computational complexity. Such mechanisms would allow CDS to dynamically adapt the execution
of neural enhancement models based on the client device capabilities and compute load, and provide
another configurable dimension for CDS to ensure high QoE. Nevertheless, the majority of existing
work focuses on classification models [38, 42, 48, 53, 55, 74, 76, 82, 83, 86, 87, 128, 142, 149, 154],
rather than super-resolution and image enhancement.
Although NAS [166] and MobiSR [92] explored this direction by introducing the scalable NAS-

MDSR model and a difficulty-aware model selection scheme, respectively, the potential of other
dynamic methods has remained unexplored. So far, the computer vision community has proposed
a broader range of dynamic neural network techniques, spanning from dynamic pruning schemes
that skip either layers [149] or channels [38, 42, 55, 153] in an input-dependent manner, model
cascades [48, 53, 74, 82, 83, 128], and early-exit models (either hand-crafted [57, 173], hardware-
aware [87], distributed [86, 154] or generic [76, 142]). By adapting and modifying such techniques,
system designers can develop dynamic neural enhancement models [161] that can be highly
optimized specifically for the deployment use-cases of content delivery systems.

5.6 Hardware Acceleration through Neural Processing Units
Another promising approach to alleviate the high computational demands of neural enhancement
models is targeting the problem from a hardware perspective. At the moment, device vendors have
integrated specialized hardware units – often named neural processing units – that are optimized
for fast deep neural network processing in both smartphones [65] and embedded platforms [6]. To
surpass the limitations of CPUs and GPUs and further boost the processing speed of neural models,
several works have proposed custom hardware accelerators [135, 145].

In this context, by considering the unique needs of content delivery systems and their use-cases,
highly customized hardware accelerators can be designed. This approach would tailor the under-
lying processing platform to the CDS’ performance requirements, overcoming the performance
and energy-efficiency bottlenecks of conventional CPUs and GPUs, and thus ensure high QoE at a
lower overall cost. Such custom hardware solutions can be obtained either through hand-crafted
designs [50] and super-resolution neural processing units [89], automated accelerator genera-
tion tools [147], or sophisticated model-hardware co-design frameworks [1, 19, 80] for the joint
development of the neural enhancement model and its efficient hardware accelerator.
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6 CONCLUSION
This paper presents a survey of a new class of visual content delivery systems that employ neural
enhancement techniques to boost their performance. Through a detailed analysis of how they
tackle the deployment challenges of deep neural enhancement models, we highlight their design
choices in terms of system architecture, novel components and neural model design, and indicate
their strengths and weaknesses. Despite the rapid progress of recent systems, the demand for visual
content traffic will grow over the coming years due to both existing and emerging technologies,
such as augmented and virtual reality [70, 106] and telepresence [170]. To this end, based on recent
developments from both the computer vision and systems communities, we identify key optimiza-
tion opportunities and propose promising research directions to address emerging challenges of
the field, enhancing their performance and enabling a wider large-scale deployment of high-QoE
content delivery services.
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